
COMPUTER SYSTEMS LABORATORY

STANFORD UNIVERSITY • STANFORD, CA 94305-4055

An Ada-Prolog System

Neel Madhav

Technical Report No. CSL-TR-90-437

Program Analysis and Verification Group Report No. 49

August, 1990
■«' ÄSSHOTsd toi pviciis reieasai

Däartacuticsi üxuaxuted

This research was supported by the Defense Advanced Research Projects Agency^unxfcr^.
contract N00039-84-C-0211.

19960916 152

FOP OPEW PUBUCAIiO

DTIC QUALITY 1U2PSCTBD 3
SEP 0 9 1996 %

DIRECTOFiÄTE FufTFREEOOW OF I'ffSP
AM) SECURITY RF.VEW (OASD-F'v

.•»1

[ML

cy

OFFICE OF THE UNDER SECRETARY OF DEFENSE (ACQUISITION & TECHNOLOGY)
DEFENSE TECHNICAL INFORMATION CENTER

8725 JOHN J KINGMAN RD STE 0944
FTBELVOIRVA 22060-6218

IN REPLY
REFER TO

DTIC-OMI 1 AUG 96

SUBJECT: Distribution Statements on Technical Documents

TO:
. U.S. DEFENSE ADVANCED RESEARCH PROJECT

AGENCY/INFORMATION SYSTEMS OFFICE
3701 NORTH FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

1. Reference: DoD Directive 5230.24, Distribution Statements on Technical Documents,
18 Mar 87.

2. The Defense Technical Information Center received the enclosed report (referenced
below) which is not marked in accordance with the above reference.

"AN ADA-PROLOG SYSTEM" REPORT #CSL-TR-90-437 CONTRACT #N00039-84-C-0211

3. We request the appropriate distribution statement be assigned and the report returned
to DTIC within 5-working days.

4. Approved distribution statements are listed on the reverse of this letter. If you have
any questions regarding these statements, call DTIC's Input Support Branch,
(703) 767-9092, 9088 or 9086 (DSN use prefix 427).

FOR THE ADMINISTRATOR:

1 End *Y,SyrAL RILEY (^
Chief, Input Support Branch

FL-171
Dec 95

DoD Directive 5230.24, "Distribution Statements on Technical Documents," 18 Mar 87, contains seven
distribution statements, as described briefly below. Technical Documents that are sent to DTIC must be
assigned one of the following distribution statements:

m DISTRIBUTION STATEMENT A:

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

□ DISTRIBUTION STATEMENT B:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED TO (INSERT
CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT C:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS;
(FILL IN REASON); (DATE STATEMENT APPLIED). OTHER REQUESTS FOR THIS DOCUMENT SHALL BE
REFERRED TO (INSERT CONTROLLING DoD OFFICE).

□ DISTRIBUTION STATEMENT D:

DISTRIBUTION AUTHORIZED TO DoD AND DoD CONTRACTORS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT E:

DISTRIBUTION AUTHORIZED TO DoD COMPONENTS ONLY; (FILL IN REASON); (DATE
STATEMENT APPLIED). OTHER REQUESTS SHALL BE REFERRED TO (INSERT CONTROLLING DoD
OFFICE).

□ DISTRIBUTION STATEMENT F:

FURTHER DISSEMINATION ONLY AS DIRECTED BY (INSERT CONTROLLING DoD OFFICE AND
DATE), OR HIGHER DoD AUTHORITY.

□ DISTRIBUTION STATEMENT X:

DISTRIBUTION AUTHORIZED TO U. S. GOVERNMENT AGENCIES AND PRIVATE INDIVIDUALS OR
ENTERPRISES ELIGIBLE TO OBTAIN EXPORT-CONTROLLED TECHNICAL DATA IN ACCORDANCE WITH
DoD DIRECTIVE 5230.25 (DATE STATEMENT APPLIED). CONTROLLING DoD OFFICE IS (INSERT).

(Reason)
Defense Advanced Research Projects Agency (DARPA)

(Controlling DoD Office Name)

OASB/TIO

7^

(Assigning/Office)

Ms"ignature/& Ty^ed Name)

hebe«, t -fW^<-

3701 North Fairfax Drive, Arlington, VA 22203
(Controlling DoD Office Address (City/State/Zip)

September 9, 1996

(Date Statement Assigned)

An Ada—Prolog System

Neel Madhav*

Program Analysis and Verification Group
Computer Systems Laboratory

Departments of Electrical Engineering and Computer Science
Stanford University

Stanford, California 94305-4055

Computer Systems Laboratory Technical Report CSL-TR-90-437

Program Analysis and Verification Group Report No. 49

August, 1990

Abstract

This paper presents a software development tool — the Ada-Prolog system which com-
bines the strengths of both descriptive and procedural programming styles. Concrete reasons
and examples are provided to demonstrate that such a tool would be useful.

This tool provides various operations available in Prolog for clause building, database
building and querying to Ada programs. In addition to allowing dynamic access to both
Ada and Prolog, the Ada-Prolog system adds to the functionality provided by Prolog by
partitioning the Prolog database into lists of clauses. These lists can be created, updated
and destroyed dynamically. Concurrent access to the list of clauses is also possible. Queries
can be directed to groups of these lists.

The system is meant for use in expert systems, compilers, database applications, rapid
prototyping systems, advanced environments, and other software tools which use deduction.

Keywords — Ada, knowledge bases, logic programming, procedural languages, Prolog,
software engineering, specification, specification analysis.

'Computer Science Department, Stanford University, Stanford, CA 94305. E-mail: Madhav@Cs.Stanford.Edu

•S2

Computer Systems Laboratory
Stanford University
Copyright © 1990

1 Introduction

There is an increasing proliferation of environments and applications which use both procedu-
ral and descriptive programming techniques [2,17]. These systems need capabilities to store
and reason with knowledge as well as capabilities like abstract interface specification, efficient
description of algorithms and concurrent execution available in general-purpose procedural lan-
guages.

Prolog is a descriptive language used mainly for symbolic computation [7]. Prolog's declar-
ative style and use of logical inference make it ideal for implementing expert system inference
engines and knowledge bases [3,21]. Ada is a general-purpose procedural language used to im-
plement programs from a wide variety of computational paradigms [1]. Applications of Ada
range from programming environments to real-time systems.

This paper presents a software development tool-^- the Ada-Prolog system that draws upon
the strengths of both procedural and descriptive programming styles to provide access to these
different programming paradigms in the same system. Figure 1 shows various properties of
Ada and Prolog and and the fact that the Ada-Prolog system provides a cross product of these
properties.

PROPERTIES OF ADA
PROPERTIES OF PROLOG

Procedural styl«

Clean Interface*

Description of algorithms

System building facilities

Generic« ■

Concurrency

••' Error Handling ::

X
Declarative style

Knowledge representation

Programming In logic

Rapid prototyping

Non determinism

Pattern matching

=
THE ADA PROLOG
SYSTEM

Figure 1: The Ada-Prolog System Provides a Cross-Product of the Properties of
Ada and Prolog

The four main contributions of this system are—1) combination of two different, com-
plementary programming styles, 2) adding software engineering programming techniques and
concurrency available in Ada to Prolog, 3) adding a capability to partition the database to
Prolog, and 4) adding symbolic reasoning to Ada.

There are other systems which seek to combine Prolog and other languages to provide
two different programming paradigms in one system. Combinations of Lisp and Prolog which
combine functional and logic programming are QLOG [10], LOGLISP [18], QUTE [19], PiL [22]
and various other systems. These systems seek to combine the syntax of Prolog and Lisp and
allow Prolog and Lisp expressions to be embedded in each other. PiL provides chunking of
the Prolog database, where a user can distribute the database among sub-databases. A system
which seeks to combine Modula-2 and Prolog is [15]. Numerous systems combine Prolog and

various database management systems [11]. One example of this is [14].
Instead of trying to force the two different styles of Ada and Prolog to live together and

combining Ada and Prolog as languages (and produce one unified language), the system pro-
vides access to both Ada and Prolog in a unified framework. This allows a user of the system
to program in Ada and Prolog in close co-operation without diluting the strengths of either
language. See [16] for a full discussion of why different languages in mixed language systems
should not be unified into one language. Such systems, it is argued, end up compromising the
strengths of their constituent languages without tangible benefits. Programmers familiar with
either language do not find a comfortable environment to work with.

In addition to the facilities provided by the systems mentioned above, the Ada-Prolog
system provides the rich facilities of Ada, and also a capability to partition the Prolog database.
This facility for partitioning the Prolog database combined with other features of Ada allows
the formation of constructs like modules, types, and generic units in Prolog [9]. The lack
of modularity in Prolog is one of the difficult problems with Prolog applications [4]. The
syntactical approach to modularization adds modules as a syntactic construct to Prolog [8].
Another approach is to introduce modularization in the environment [5]. The Ada-Prolog
system takes the second approach and provides modularization through partitioning of the

Prolog database.
The concurrency provided by the Ada-Prolog system is at the query level. That is, two

queries at the top level can proceed concurrently with each other but there is no concurrency
between sub-queries within a query. The Ada-Prolog system does not provide the concurrency
available in PARLOG [6] or Concurrent Prolog [20].

The Ada-Prolog system is an Ada program library package. This package provides logic
programming operations to Ada programs. In addition to the facilities of both Prolog and
Ada, the Ada-Prolog system has a facility for dynamically constructing separate lists of clauses
instead of a single database. Section 2 discusses the Ada-Prolog system.

This package has been completely specified using Anna [12], a language for specifying Ada
programs. This formal specification of the system allows the user the understand the func-
tionality of the Ada-Prolog system at an abstract level without the need to understand the

implementation.
Section 3 presents a simple example which demonstrates the capabilities of the Ada-Prolog

system. Section 4 describes applications of the interface. An environment tool developed using
the Ada-Prolog system is also outlined. Section 5 concludes the paper.

2 The Ada — Prolog System

The interface to the Ada-Prolog system is an abstractly specified package which provides logic
programming operations to Ada programs. At the heart of the implementation of this package
is a modified Prolog interpreter written in Ada.

There are two basic activities taking place in a Prolog system:

• defining facts and relationships between facts, called rules and

• querying whether certain facts follow from other facts and relationships

These activities can be looked upon as the process of building a knowledge base and then
using an inference engine to draw inferences from it. The Ada-Prolog system provides two
additional facilities:

• dynamically creating, changing and deleting databases of facts and rules.

• building systems with abstract interfaces which can execute queries concurrently.

This does not change the logical aspects of Prolog but allows the existence of multiple
databases. As we shall demonstrate later, this facility is of great practical use.

The Ada-Prolog system provides abstract operations for all of the above activities. There
are three broad parts of the Ada-Prolog system interface—a clause building sub-package, a
database sub-package and a query sub-package.

2*1 Clauses

Clauses are used to represent Prolog structures. That is, they form both the assertion language
and the query language of the system.

Clauses are represented as abstract trees. Each internal node of the tree is a constant which
represents the functor of the clause. Each of the leaves of the tree is a constant, a variable or
a number. Numbers can be looked upon as constants which cannot have children. Clauses can
be facts and rules. Rules differ from facts in that they have a head and a tail. Figure 2 shows
the structure of a clause. The structure is shown in a BNF like notation. Vertical bars denote
alternation. Stars denote zero or more occurrences of the preceding construct. Clauses are a

<Clause> ::= <Fact> I <Rule> ;
<Fact> ::= <Constant> I <Predicate> ;
<Rule> ::= <Head> <Tail> ;
<Predicate> ::= <Constant> (<Term>) * ;
<Head> ::= <Fact> ;
<Tail> ::= (<Fact>) * ;
<Term> ::= <Constant> I <Variable> I

<Number> I <Fact> ;

Figure 2: The Structure of Clauses

private type in the Ada-Prolog system. The internal representation of these types is not visible
to the user. Constants, variables and numbers are provided as primitives in the Ada-Logic
system. Various clause building operations are provided.

It is sometimes cumbersome to build clauses by adding nodes to trees. Therefore the Prolog
parser has been isolated and is provided as a routine at the interface level. This routine, given
a string, parses it and returns a clause. All these routines follow Prolog syntax conventions.
Another routine, given a clause dumps the clause into a string.

Figure 3 shows a part of Ada-Prolog that deals with building and selecting parts of clauses.

type CLAUSE is private;
function BUILD_FACT(ATTR
function BUILD_FACT(ATTR

-- Fact building operations.

INTEGER) return CLAUSE;
IDENTIFIER)

return CLAUSE;

function IS_RULE(C : CLAUSE) return BOOLEAN;
function BUILD_RULE(HEAD_OF_CLAUSE : CLAUSE;

TAIL : LIST_OF_SONS) return CLAUSE;
function GET_HEAD(C : CLAUSE) return CLAUSE;
function GET_TAIL(C : CLAUSE) return LIST_OF_SONS;
-- Rule disassembling and rule building operations.

-- Other operations.
function READ_CLAUSE(TEXT
function DUMP_CLAUSE(TREE

STRING) return CLAUSE;
CLAUSE) return STRING;

Figure 3: Some Operations on Clauses

2.2 Databases

The AdarProlog system allows the Prolog database to be partitioned into lists of clauses. This
is useful for three reasons. Firstly, this reduces the search space for queries since it allows
the user to keep different kinds of information separate. For example, knowledge about airline
schedules can be kept separate from knowledge about airline employee work hours. Secondly,
different users can share alist, possibly concurrently, keeping their own data safely separate from
other users. Different users can thus communicate through the Ada-Prolog system. Thirdly
this partitioning combined with Ada scoping allows the introduction of scoping in the Prolog
database. A user can put assertions into a list and test their consequences before committing
to that list.

A list of clauses is indexed by integers. These lists can store an arbitrary number of clauses
and can be created, destroyed and modified dynamically. Lists of clauses are implemented by a
time and space efficient data structure. Hashing techniques are used to achieve time efficiency
and shared data structures axe used to achieve space efficiency. A reference on Prolog implemen-
tations is [23]. There is, in addition, a global database which has Prolog system information.
This global database is also expected to contain user defined, system wide information.

One would need, in general, to direct queries to more than one list. For example, a compiler
might want to keep information about integers, numeric types, and general types in separate
lists but might want to direct queries to all of the lists together. Therefore, lists of lists are
defined. Lists of clauses can be grouped into lists of lists. A list of clauses can belong to more
than one list of lists. Queries can then be directed to these lists of lists.

Operations are available to read a list of clauses, written out in Prolog syntax, from a file.
An inverse operation that Writes lists of clauses onto files is also provided.

Figure 4 shows the section of the Ada-Prolog package which deals with lists of clauses and
lists of lists.

type LIST_OF_CLAUSES is private;
function CREATE return LIST OF CLAUSES;
function APPEND_CLAUSE(C : CLAUSE;

L : LIST_OF_CLAUSES)
return LIST_OF_CLAUSES;

— Operations to build and disassemble lists of clauses.

type LIST_OF_LISTS is private;
function CREATE return LIST_OF_LISTS;
function APPEND_LISTS(L : LIST_OF_CLAUSES;

LL : LIST_OF_LISTS)
return LIST_OF_LISTS;

— Operations to build and disassemble lists of lists.

function READ_FILE(F : FILEJTYPE)
return LIST_OF_CLAUSES;

procedure WRITE_FILE(L : LIST_OF_CLAUSE;
F : FILE_TYPE);

— File Operations.

Figure 4: Database Operations

2.3 Queries

Queries, posed in the form of a clause with unbound variables, can be directed to lists of clauses
or lists of lists. An answer to a query is, either true with a list of substitutions of free variables
which make the query true, or the answer is false.

There are two modes of query available in the Ada-Prolog system. A user can get all
possible answers at one time or get the answers one at a time. Figure 5 shows the section of
the Ada-Prolog package which deals with queries.

The type answer is a private type which is a list of variable-clause pairs. These pairs
represent the bindings of free variables in a query. The data-structure list of answers is used
to return all answers to a query.

2.3.1 Concurrent Execution of Queries

Since Ada has facilities for concurrent execution of programs, different users can direct queries
concurrently to the Ada-Prolog system. Placing a query inside a separate thread of control
through a task allows the query to proceed concurrently with other queries. If there was no
mechanism for sharing lists which the queries act upon, the concurrency provided would not be
powerful enough to model most concurrent systems of today. Therefore, different queries may
share a common list of clauses. Figure 6 shows concurrent execution of queries.

To exclude the possibility of a concurrent update of lists, a very simple locking facility is
provided. Shared lists may be queried concurrently, a query may not proceed concurrently with
an update and two updates may not proceed concurrently.

type ANSWER is private;
type LIST_OF_ANSWERS is private;

-- Operations to disassemble answers.

procedure QUERY(QUESTION : CLAUSE;
BASEDON : LIST_OF_LISTS;
SUCCESS : out BOOLEAN;
BINDINGS : out ANSWER);

— Return one possible set of bindings.
procedure NEXT ANSWER(SUCCESS : out BOOLEAN;

BINDINGS : out ANSWER);
— Get the next answer for the previously asked query.
procedure QUERY(QUESTION : CLAUSE;

BASED_ON : LIST_OF_LISTS;
SUCCESS : out BOOLEAN;
SOLUTIONS : out LIST_OF_ANSWERS);

— Return all possible answers to a query.

Figure 5: Query Operations

3 A Simple Example: A Family Tree Knowledge Base

This example illustrates combination of procedural and descriptive styles, using various facilities
of Ada and Prolog, and partitioning of the Prolog database.

This example outlines an implementation of a shared knowledge base of family trees. Family
trees will be stored as Prolog facts of the form parent(X,Y). This stands for the fact that X
is a parent of Y. A user can createa new tree, modify a tree or ask queries about a family
tree. All these actions will be performed concurrently with other users. Queries may be about
relationships satisfied by a tree. For example, a typical query could be ancestor(X,Y), whether
X is an ancestor of Y. Rules for inferring relationships are common to all families.

An implementor has to provide all these facilities in a user-friendly manner as well as
implement the knowledge base such that rules about new relationships can be added to the
knowledge base dynamically.

We now describe an implementation of the knowledge base.
Each family will have its tree in a separate list. Since new lists can be created and modified

dynamically, creating new family trees and modifying family trees is just a matter of a subpro-
gram call to the Ada-Prolog system. Notice that if names in different families are the same,
this does not create a problem. Also, updates to a family tree can be done independent of other
family trees. Since lists can be modified and queried concurrently, this is simple to implement
in the Ada-Prolog system. Figure 7 shows part of the code used to implement family trees.

Storing and retrieving family trees from files is quite simply implemented by calls to routines
in the Ada-Prolog system interface. Notice that if one needs to merge two family trees, as one
might when two people get married, this too is just a matter of a subroutine call. Figure 8
shows part of the code to change, merge and update family trees.

Common knowledge, like rules for inferring whether X is an ancestor of Y, are stored in a

jfekTAKll8

0ÜERY(Lt1,...)j
I

r L1 (Not shared)

I- — * — -. — *- * L|_2(SharedList)

Concurrent Execution

«tas*TASK2ls

QUERY(U2,.,.);

ti'-Sw^äw^-i-'S-Sw:»:-;*-- »:'Bw:l

rL2(SharedList)

- L3(Not Shared)

Figure 6: Concurrently Executing Queries Can Share a List

SMITH_FAM_TREE : LISTOF.CLAUSES;
SMITH_FAM_TREE := CREATE;
— Create a tree.
APPEND_CLAUSE(READ_CLAUSE("parent(john, liz)"),

SMITH_FAM_TREE);
— Add various connections to the family tree. Facts can be built in three ways:
-- by building the fact node by node, by using the parsing routines of the system
-- to parse a siring representing the fact and by reading the fact from a file.

Figure 7: Creating Family Trees

shared list. Rules can be added or deleted from this list dynamically. The Prolog inference
engine acts as the inference engine for this system. All queries about the knowledge base are
answered through this inference engine. Since queries can be directed to arbitrary sets of lists,
queries can be directed to the union of a family tree and the common knowledge base. Figure 9
illustrates the insertion of rules into this common database.

Queries can now be directed to the system about various family trees. These queries can be
concurrently directed to the same lists but lists cannot be updated concurrently with queries.
Figure 10 illustrates part of the code which may be used to query the system.

The user interface of the system can be implemented in Ada. There are numerous windowing
and graphics facilities available in Ada for this purpose. All the input and output is done
through Ada routines. All the commands and queries go through Ada. Therefore the control
of the whole knowledge base is in Ada. Calls are made to Prolog whenever appropriate. If one
needs to code some algorithmic knowledge as part of the knowledge base, for example sorting
all members of a family tree, this can be implemented simply and elegantly in Ada.

APPEND_CLAUSE(READ_CLAUSE("parent(john, mary)"),
SMITH_FAM_TREE);

— Adding a clause to a tree.
REMOVE_CLAUSE(READ_CLAUSE("parent(X,liz)"),

SMITH_FAM_TREE);
— Removing a clause from the family tree.
NEW FAMILYTREE := APPEND_LISTS(SMITH_FAM_TREE,

JOHNSON_FAMILY_TREE);

— Merging two family trees.

Figure 8: Updating and Manipulating Family Trees

HEAD := READ_CLAUSE("ancestor(X,Y)");
TAIL := READ_CLAUSE("parent(X,Y)");
TAIL_LIST := CREATE;
APPEND_CLAUSE(TAIL_LIST,TAIL);
ANCESTOR_RULE := BUILD_RULE(HEAD,TAIL_LIST);
— Creating a rule. Rules can also be created in all three ways for creating
— facts.
APPEND_CLAUSE(GLOBAL_LIST,ANCESTOR_RULE);

— Adding a rule to the global list.

Figure 9: Creating the Global Database

COMBINED_SMITH_LIST :=
APPEND_LISTS(GLOBAL_LIST,SMITH_FAM_TREE);
COMBINED_JOHNSON_LIST :=
APPEND_LISTS(GLOBAL_LIST,JOHNSON_FAMILY_TREE);

— Combine databases.
Q := READ_CLAUSE("ancestor(Xjohn)");
— Formulate a query.
QUERY(Q,COMBINED_SMITH_LIST>SUCC,ANSWERS);
— Pose the query. The variable SUCC will be true if there is an ancestor of
— John. All the successors of John, if any, will be in the list variable AN-
 SWERS. Routines are provided for disassembling answers.

task body TASK1 is

QUERY(Q,COMBINED_JOHNSON_LIST,SUCC)ANSWERS2);

end TASK1; .
— The task executes in a separate thread of control. The two queries, thus
— execute concurrently. The list GLOBAL_LIST is shared by the two queries
— If there was a need for communication between the two queries, they could
— communicate through adding assertions to a common list of clauses.

Figure 10: Querying the Family Tree System

4 Ada-Prolog Applications

Applications for the Ada-Prolog system can be divided into two categories—applications tradi-
tionally implemented in Ada but would benefit from the strengths of Prolog, and applications
traditionally implemented using Prolog but would benefit from the strengths of Ada. The first
kind of applications are advanced environments, compilers, and a variety of defense industry
embedded applications. The second kind of applications are expert systems, certain database
applications, rapid prototyping systems and theorem proving systems.

There are three levels at which Ada and Prolog complement each other. Firstly they have
complementary styles of programming—procedural for Ada and descriptive for Prolog. Sec-
ondly, each language can use software written in the other language. Thirdly, each language
can remedy the other's defects[16]. For example, Prolog has backtracking which Ada does not
have and Ada has destructive assignment which Prolog does not have.

Ada provides facilities available in procedural languages like Pascal as well as a rich type
structure, packages, concurrency and exception handling. Ada supports software engineering
concerns by providing facilities like separate compilation, program libraries, clean interfaces
and generic units. Ada programs have access to a vast amount of pre-existing software and -
tools. For example, parsers, editors, debuggers, databases, window systems, graphics tools and
even operating systems are available in Ada. The advantage of Ada is that it is portable. Thus
any Ada program can use the tools mentioned above. Applications traditionally implemented
using Prolog can benefit from all these facilities that Ada provides.

The unique properties of Prolog facilitate rapid prototyping, knowledge representation, pro-
gramming in logic, non-determinism, backtracking and pattern matching. Traditionally tools
like compilers and databases were implemented in procedural languages like C. Artificial intel-
ligence techniques are increasingly being used to incorporate expert system like functionality in
these systems [3,2]. These systems and other advanced environment tools also need a capability
for deduction. Prolog is eminently suited for providing these facilities. The Ada-Prolog system
can provide expert system building facilities as well as deduction to programs traditionally
implemented in procedural languages. An illustration of this is provided in figure 1.

As demonstrated in section 3 the partitioning capability is also very useful for both kinds
of applications.

4.1 Implementation of a Specification Analyzer

The specification analyzer [13] uses the Ada-Prolog system to symbolically execute program
specifications written in Anna, to verify their properties before an implementation is provided.

The specification analyzer can be looked upon as a number of co-operating systems. These
systems specialize in symbolic execution of programs, typing rules of Ada, and theorem proving.
Each of these systems assists in symbolic execution of program specifications. The typing rules
are needed to ensure a correct specification, the symbolic execution of programs allows parts
of the specification to be executed, and the theorem prover allows the system to prove certain
properties of specifications.

These systems share a Prolog database through the Ada-Prolog system. This database is
hierarchically organized with more basic knowledge stored at a lower level and complex knowl-

edKe stored at a higher level. Each of these systems has its own inference engine implemented
in Prolog The common database is also implemented in Prolog. The user interface of the
specification analyzer is implemented in Ada. Ada is also used to implement portions of the
specification analyzer that require an algorithmic style of programming, for example, the Anna
parser and the X windows interface to the specification analyzer.

5 Conclusion

The Ada-Prolog system is a software tool which has wide application. The system combines
the strengths of both Ada and Prolog to provide a flexible environment which allows both

descriptive and procedural styles of programming.
For applications traditionally implemented by Prolog, like expert systems, it provides a

wide variety of tools and facilities available in Ada. For applications traditionally implemented
by Ada like tools in an advanced environment, the system provides the declarative power
of Prolog. In addition to combining these two programming styles, the Ada-Prolog system
provides facilities of Ada like concurrency and software system building techniques to Prolog
programs. The system also provides a facility to partition the Prolog database which allows easy
communication among component systems and allows scoping to be introduced in a database.

The Ada-Prolog system is at the heart of a specification analysis system and has been
used for rapid prototyping and other applications. The system has been ported to a Sun-3, a
Sequent and an IBM-AT computer. The system brings a host of software engineering techniques
to expert systems like formal specifications and clean interfaces.

Further information about the Ada package which implements the Ada-Prolog system can

be obtained from the author.

Acknowledgements

The author would like to thank Professor David Luckham at Stanford for his guidance and

his support for writing this paper.
This research was supported by the Defense Advanced Research Projects Agency under

contract N00039-84-C-0211.

References
[1] Reference Manual for the ADA Programming Language. United States Department of

Defense. ANSI/MIL-STD-1815A-1983.

[2] Berkeley/CMU Advanced Environments Workshop, Berkeley, CA. June 1988. Unpub-

lished proceedings.

[31 Daniel G. Bobrow. If Prolog is the Answer, What is the Question? or What it Takes
to Support AI Programming Paradigms. IEEE Transactions on Software Engineering,

SE-11(11):1401-1408, November 1985.

10

[4] W. Chen. A Theory of Modules for Prolog. Technical Report, Department of Computer
Science, SUNY at Stony Brook, NY, 1986.

[5] J. Chomicki and N. H. Minsky. Towards a Programming Environment for Large Prolog
Programs. In IEEE Symposium on Logic Programming, pages 230-241, 1985.

[6] K. Clark and S. Gregory. PARLOG: Parallel Programming in Logic. ACM TOPLAS,
8(l):l-49, January 1986.

[7] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, 1984.

[8] A. Feuer. Building Libraries in Prolog. In Proceedings 8th IJCAI, West Germany,
pages 550-552, 1983.

[9] J. A. Goguen and J. Meseguer. Equality, Types, Modules and Generics for Logic Pro-
gramming. Technical Report, Center for the Study of Language and Information, Stanford
University, 1984.

[10] R. A. Komorowski. QLOG - The Programming Environment for PROLOG in LISP. In
K. L. Clark and S. A. Tarnlund, editors, Logic Programming, Academic Press, 1982.

[11] R. A. Kowalski. Logic as a Database Language. In Proceedings 3rd British National
Conference on Databases, 1984.

[12] David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Brückner, and Olaf Owe.
Anna—A Language for Annotating Ada Programs. Springer-Verlag—Lecture Notes in
Computer Science No. 260, July 1987. (Also Stanford University Computer Systems Lab-
oratory Technical Report No. 84-261).

[13] Walter R. Mann. Implementation of a Specification Analyzer. Technical Report in Prepa-
ration.

[14] K. Morris, J. D. Ullman, and A. VanGelder. NAIL! System Design Overview. In Proceed-
ings of the 3rd International Conference on Logic Programming, London, 1986.

[15] Carlo Müller. Modula Prolog: A Software Development Tool. IEEE Software, 39-45,
November 1986.

[16] R. A. O'Keefe. Prolog and Mixed Language Programming. Technical Report, Department
of Artificial Intelligence, University of Edinburgh, 1984.

[17] C. Rich and R. C. Waters. Readings in Artificial Intelligence and Software Engineering.
Morgan Kaufmann Publishers, 1986.

[18] J. A. Robinson and E. E. Sibert. LOGLIS,P: Motivation, Design and Implementation. In
K. L. Clark and S. A. Tarnlund, editors, Logic Programming, Academic Press, 1982.

[19] M. Sato and T. Sakurai. QUTE: A Prolog/Lisp Language for Logic Programming. Tech-
nical Report, Department of Information Science, University of Tokyo, 1983.

11

[20] E. Y. Shapiro. Systems Programming in Concurrent Prolog. In Proceedings of the 11th
ACM Symposium on Principles of Programming Languages, Salt Lake City, Utah, January
1984.

[21] Adrian Walker, Michael McCord, John F. Sowa, and Walter G. Wilson. Knowledge Systems
and Prolog. Addison-Wesley, 1987.

[22] R. S. Wallace. PiL (Prolog in Lisp) Introduction, Implementation, Documentation. Tech-
nical Report, University of Maryland, Computer Science Center, 1983.

[23] D. H. D. Warren. Implementing Prolog—Compiling Predicate Logic Programs. Technical
Report 39, D. A. I., Edinburgh, May 1977.

12

